Hotdry.
ai-systems

Rust原生AI智能体的架构突破:Goose如何用MCP协议重新定义工具调用

深入分析Goose的Rust+TypeScript架构,探讨基于Model Context Protocol的模块化AI智能体设计,以及Recipe工作流系统的工程实现。

在 AI 智能体的技术竞赛中,从 Python 生态的 LangChain 到 JavaScript 的 AutoGen,大多数框架都依赖于解释型语言和动态类型系统。Goose 作为 Block 公司开源的企业级 AI 智能体框架,以 Rust 的内存安全特性和 TypeScript 的现代前端能力为基础,通过 Model Context Protocol (MCP) 实现了工具调用的标准化,为 AI 智能体架构带来了全新的工程范式。21k 的 GitHub 星标和活跃的社区贡献,充分证明了这一技术路线的市场认可度。

Rust 原生智能体的工程设计哲学

Goose 选择 Rust 作为核心开发语言,并非简单的技术偏好,而是基于企业级应用对安全性和性能的根本需求。Rust 的内存安全保证和零成本抽象特性,为构建可靠的 AI 智能体提供了坚实的技术基础。

并发安全的智能体架构

// Gooose核心智能体状态管理
use std::sync::Arc;
use tokio::sync::{Mutex, RwLock, Semaphore};
use serde::{Deserialize, Serialize};
use chrono::{DateTime, Utc};

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct AgentState {
    pub session_id: String,
    pub current_task: Option<Task>,
    pub memory_bank: Vec<MemoryItem>,
    pub tools_accessed: Vec<String>,
    pub context_window: ContextWindow,
    pub last_activity: DateTime<Utc>,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Task {
    pub id: String,
    pub description: String,
    pub status: TaskStatus,
    pub steps: Vec<Step>,
    pub current_step: usize,
    pub result: Option<TaskResult>,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum TaskStatus {
    Pending,
    InProgress,
    Completed,
    Failed,
    Cancelled,
}

pub struct AgentRuntime {
    state: Arc<RwLock<AgentState>>,
    tools_registry: Arc<Mutex<ToolsRegistry>>,
    llm_provider: Arc<dyn LLMProvider>,
    mcp_client: Arc<Mutex<MCPClient>>,
    execution_pool: Arc<Semaphore>,
}

impl AgentRuntime {
    pub async fn new(
        llm_provider: Arc<dyn LLMProvider>,
        mcp_client: Arc<Mutex<MCPClient>>,
    ) -> Self {
        let initial_state = AgentState {
            session_id: uuid::Uuid::new_v4().to_string(),
            current_task: None,
            memory_bank: Vec::new(),
            tools_accessed: Vec::new(),
            context_window: ContextWindow::default(),
            last_activity: Utc::now(),
        };

        Self {
            state: Arc::new(RwLock::new(initial_state)),
            tools_registry: Arc::new(Mutex::new(ToolsRegistry::new())),
            llm_provider,
            mcp_client,
            execution_pool: Arc::new(Semaphore::new(10)), // 限制并发任务数
        }
    }

    // 执行任务的并发安全实现
    pub async fn execute_task(&self, task: Task) -> Result<TaskResult, AgentError> {
        // 获取执行许可
        let _permit = self.execution_pool.acquire().await.map_err(|_| {
            AgentError::ExecutionPoolExhausted("Too many concurrent tasks".to_string())
        })?;

        let task_id = task.id.clone();
        let mut state = self.state.write().await;
        
        // 更新任务状态
        state.current_task = Some(task.clone());
        state.last_activity = Utc::now();

        drop(state); // 释放写锁,允许其他操作并行执行

        // 并发执行任务步骤
        let result = self.execute_task_steps(task).await?;
        
        let mut state = self.state.write().await;
        state.current_task = None;
        state.memory_bank.push(MemoryItem::TaskComplete {
            task_id,
            result: result.clone(),
            timestamp: Utc::now(),
        });

        Ok(result)
    }

    async fn execute_task_steps(&self, task: Task) -> Result<TaskResult, AgentError> {
        let mut step_results = Vec::new();
        
        for (step_index, step) in task.steps.into_iter().enumerate() {
            // 安全地执行每个步骤
            let step_result = self.execute_step(step, step_index).await?;
            step_results.push(step_result);
            
            // 检查是否需要中断任务
            if step_results.last().unwrap().requires_interrupt {
                break;
            }
        }

        Ok(TaskResult::StepsCompleted { step_results })
    }
}

内存安全的上下文管理

// 上下文窗口的安全管理
use lru::LruCache;
use std::num::NonZeroUsize;

pub struct ContextWindow {
    capacity: usize,
    token_limit: usize,
    cache: LruCache<String, ContextItem>,
}

#[derive(Debug, Clone)]
pub struct ContextItem {
    pub content: String,
    pub importance_score: f32,
    pub timestamp: DateTime<Utc>,
    pub source: ContextSource,
}

impl ContextWindow {
    pub fn new(capacity: usize, token_limit: usize) -> Self {
        Self {
            capacity,
            token_limit,
            cache: LruCache::new(NonZeroUsize::new(capacity).unwrap()),
        }
    }

    // 安全的上下文项添加
    pub async fn add_item(&mut self, item: ContextItem) -> Result<(), ContextError> {
        // 验证内容长度
        if item.content.len() > self.token_limit {
            return Err(ContextError::TokenLimitExceeded {
                content_length: item.content.len(),
                token_limit: self.token_limit,
            });
        }

        // 计算重要性分数
        let adjusted_score = self.calculate_importance(&item)?;
        
        // 动态调整缓存大小
        if self.cache.len() >= self.capacity {
            self.evict_least_important().await?;
        }

        let item_id = uuid::Uuid::new_v4().to_string();
        self.cache.put(item_id, item);

        Ok(())
    }

    // 智能重要性评估
    fn calculate_importance(&self, item: &ContextItem) -> Result<f32, ContextError> {
        let mut score = item.importance_score;

        // 基于内容类型调整分数
        score += match &item.source {
            ContextSource::UserMessage => 0.2,
            ContextSource::ToolExecution => 0.1,
            ContextSource::MCPResponse => 0.15,
            ContextSource::LLMResponse => 0.05,
            ContextSource::Error => -0.1,
        };

        // 基于时间衰减调整分数
        let age_hours = (Utc::now() - item.timestamp).num_hours() as f32;
        let time_decay = (-age_hours / 24.0).exp() * 0.1; // 24小时半衰期
        score += time_decay;

        Ok(score.clamp(0.0, 1.0))
    }

    async fn evict_least_important(&mut self) -> Result<(), ContextError> {
        // 找到重要性最低的项并移除
        let mut least_important_key = None;
        let mut lowest_score = f32::MAX;

        for (key, item) in self.cache.iter() {
            if item.importance_score < lowest_score {
                lowest_score = item.importance_score;
                least_important_key = Some(key.clone());
            }
        }

        if let Some(key) = least_important_key {
            self.cache.pop(&key);
        }

        Ok(())
    }
}

Model Context Protocol 的深度集成

MCP 作为连接 AI 智能体与外部工具的标准化协议,Goose 的架构实现了对 MCP 的原生支持。这种设计不仅仅是简单的协议实现,更是将 MCP 作为智能体能力的核心扩展机制。

MCP 客户端的架构设计

// MCP客户端实现
use async_trait::async_trait;
use serde_json::{Value, json};

#[async_trait]
pub trait MCPProvider: Send + Sync {
    async fn list_tools(&self) -> Result<Vec<Tool>, MCPError>;
    async fn call_tool(&self, tool_name: String, parameters: Value) -> Result<Value, MCPError>;
    async fn get_resources(&self, uri: String) -> Result<Value, MCPError>;
    async fn sample_prompt(&self, name: String, arguments: Value) -> Result<Value, MCPError>;
}

pub struct AnthropicMCPProvider {
    client: reqwest::Client,
    api_key: String,
    endpoint: String,
}

#[async_trait]
impl MCPProvider for AnthropicMCPProvider {
    async fn list_tools(&self) -> Result<Vec<Tool>, MCPError> {
        let response = self.client
            .get(&format!("{}/tools/list", self.endpoint))
            .header("Authorization", format!("Bearer {}", self.api_key))
            .send()
            .await
            .map_err(MCPError::NetworkError)?;

        let response_data: Value = response
            .json()
            .await
            .map_err(MCPError::ParseError)?;

        let tools = serde_json::from_value::<Vec<Tool>>(response_data["tools"].clone())
            .map_err(MCPError::SerializationError)?;

        Ok(tools)
    }

    async fn call_tool(&self, tool_name: String, parameters: Value) -> Result<Value, MCPError> {
        let payload = json!({
            "name": tool_name,
            "arguments": parameters
        });

        let response = self.client
            .post(&format!("{}/tools/call", self.endpoint))
            .header("Authorization", format!("Bearer {}", self.api_key))
            .json(&payload)
            .send()
            .await
            .map_err(MCPError::NetworkError)?;

        let response_data: Value = response
            .json()
            .await
            .map_err(MCPError::ParseError)?;

        Ok(response_data["result"].clone())
    }
}

// 工具注册表管理
pub struct ToolsRegistry {
    registered_tools: HashMap<String, RegisteredTool>,
    mcp_providers: HashMap<String, Arc<dyn MCPProvider>>,
    tool_usage_stats: HashMap<String, ToolUsageStats>,
}

impl ToolsRegistry {
    pub async fn register_mcp_provider(
        &mut self,
        provider_name: String,
        provider: Arc<dyn MCPProvider>,
    ) -> Result<(), RegistryError> {
        // 获取并注册所有MCP工具
        let tools = provider.list_tools().await.map_err(RegistryError::MCPError)?;
        
        for tool in tools {
            let registered_tool = RegisteredTool {
                name: tool.name.clone(),
                description: tool.description,
                parameters: tool.parameters,
                provider: provider_name.clone(),
                capabilities: tool.capabilities,
                usage_count: 0,
                last_used: None,
            };
            
            self.registered_tools.insert(tool.name.clone(), registered_tool);
        }

        self.mcp_providers.insert(provider_name, provider);
        Ok(())
    }

    // 智能工具选择算法
    pub async fn select_optimal_tool(
        &self,
        task_description: &str,
        required_capabilities: &[String],
    ) -> Result<String, ToolSelectionError> {
        let mut candidates = Vec::new();

        // 基于能力匹配
        for (tool_name, tool) in &self.registered_tools {
            let capability_match = required_capabilities
                .iter()
                .all(|cap| tool.capabilities.contains(cap));
            
            if capability_match {
                // 获取使用统计
                let stats = self.tool_usage_stats.get(tool_name).unwrap_or(&ToolUsageStats::default());
                
                candidates.push(ToolCandidate {
                    tool_name: tool_name.clone(),
                    success_rate: stats.success_rate,
                    avg_response_time: stats.avg_response_time,
                    recent_usage: stats.recent_usage,
                    relevance_score: self.calculate_relevance(tool_name, task_description),
                });
            }
        }

        // 按综合分数排序
        candidates.sort_by(|a, b| {
            b.composite_score()
                .partial_cmp(&a.composite_score())
                .unwrap_or(std::cmp::Ordering::Equal)
        });

        candidates
            .first()
            .map(|c| c.tool_name.clone())
            .ok_or(ToolSelectionError::NoSuitableTool {
                requirements: required_capabilities.to_vec(),
            })
    }
}

Recipe 工作流系统的实现

Goose 的 Recipe 系统是区别于其他 AI 智能体框架的核心特性,它允许用户通过 YAML 配置定义复杂的自动化任务。

// Recipe解析器和执行引擎
use serde::{Deserialize, Serialize};
use validator::Validate;

#[derive(Debug, Clone, Serialize, Deserialize, Validate)]
pub struct Recipe {
    #[validate(length(min = 1))]
    pub version: String,
    #[validate(length(min = 1))]
    pub title: String,
    pub description: String,
    pub instructions: String,
    pub extensions: Vec<Extension>,
    pub parameters: Vec<Parameter>,
    pub activities: Vec<String>,
    pub response: Option<ResponseSchema>,
    pub settings: Option<RecipeSettings>,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Extension {
    #[serde(rename = "type")]
    pub extension_type: ExtensionType,
    pub name: String,
    pub cmd: Option<String>,
    pub args: Option<Vec<String>>,
    pub timeout: Option<u64>,
    pub description: String,
    pub settings: Option<serde_json::Value>,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(rename_all = "snake_case")]
pub enum ExtensionType {
    Stdio,
    HTTP,
    MCP,
    Local,
}

pub struct RecipeExecutor {
    runtime: Arc<AgentRuntime>,
    extension_handlers: HashMap<ExtensionType, Arc<dyn ExtensionHandler>>,
}

impl RecipeExecutor {
    pub async fn execute_recipe(
        &self,
        recipe: Recipe,
        parameters: HashMap<String, Value>,
    ) -> Result<RecipeExecutionResult, ExecutionError> {
        // 1. 验证参数
        self.validate_parameters(&recipe, &parameters)?;
        
        // 2. 准备执行上下文
        let execution_context = self.prepare_context(&recipe, parameters).await?;
        
        // 3. 初始化扩展
        let mut initialized_extensions = self.initialize_extensions(&recipe).await?;
        
        // 4. 构建指令
        let instructions = self.substitute_parameters(&recipe.instructions, &parameters)?;
        
        // 5. 调用LLM执行
        let llm_response = self.llm_provider
            .complete_with_context(&instructions, &execution_context)
            .await?;
            
        // 6. 处理响应
        let processed_response = self.process_response(llm_response, &recipe).await?;
        
        // 7. 清理扩展
        for extension in initialized_extensions.iter() {
            if let Err(e) = extension.cleanup().await {
                log::warn!("Failed to cleanup extension: {:?}", e);
            }
        }

        Ok(processed_response)
    }

    async fn initialize_extensions(
        &self,
        recipe: &Recipe,
    ) -> Result<Vec<Box<dyn InitializedExtension>>, ExtensionError> {
        let mut extensions = Vec::new();

        for extension_config in &recipe.extensions {
            let handler = self.extension_handlers
                .get(&extension_config.extension_type)
                .ok_or(ExtensionError::UnsupportedType {
                    extension_type: extension_config.extension_type.clone(),
                })?;

            let initialized = handler.initialize(extension_config).await?;
            extensions.push(initialized);
        }

        Ok(extensions)
    }

    // 动态参数替换
    fn substitute_parameters(
        &self,
        template: &str,
        parameters: &HashMap<String, Value>,
    ) -> Result<String, ParameterError> {
        let mut result = template.to_string();
        
        for (key, value) in parameters {
            let placeholder = format!("{{{{{}}}}}", key);
            let value_str = match value {
                Value::String(s) => s.clone(),
                Value::Number(n) => n.to_string(),
                Value::Bool(b) => b.to_string(),
                Value::Null => "null".to_string(),
                _ => serde_json::to_string(value).map_err(|e| ParameterError::SerializationError {
                    key: key.clone(),
                    error: e.to_string(),
                })?,
            };
            
            result = result.replace(&placeholder, &value_str);
        }

        Ok(result)
    }
}

TypeScript 前端的现代化架构

Goose 的 Electron 前端采用 TypeScript 和现代 Web 技术栈,为 AI 智能体提供了直观的用户界面。

状态管理的 Reactive 架构

// TypeScript前端状态管理
import { BehaviorSubject, Observable, combineLatest } from 'rxjs';
import { map, filter, distinctUntilChanged } from 'rxjs/operators';

interface AgentUIState {
  session: SessionInfo;
  currentTask: Task | null;
  availableTools: Tool[];
  executionHistory: ExecutionRecord[];
  errorLogs: ErrorLog[];
  preferences: UserPreferences;
}

interface Task {
  id: string;
  title: string;
  description: string;
  status: TaskStatus;
  progress: number;
  steps: TaskStep[];
  result?: TaskResult;
}

class AgentStateManager {
  private state$ = new BehaviorSubject<AgentUIState>(this.getInitialState());
  private errorHandler: ErrorHandler;
  private telemetry: TelemetryService;

  constructor(
    private backend: GooseBackendClient,
    private mcpManager: MCPManager
  ) {
    this.setupStateSubscriptions();
  }

  private setupStateSubscriptions(): void {
    // 监听任务状态变化
    this.state$.pipe(
      map(state => state.currentTask),
      distinctUntilChanged()
    ).subscribe(task => {
      if (task) {
        this.handleTaskUpdate(task);
      }
    });

    // 监听工具可用性变化
    combineLatest([
      this.state$.pipe(map(s => s.availableTools)),
      this.mcpManager.tools$
    ]).subscribe(([uiTools, mcpTools]) => {
      this.updateAvailableTools([...uiTools, ...mcpTools]);
    });
  }

  // 智能任务创建
  async createTask(request: TaskRequest): Promise<Task> {
    try {
      // 1. 验证请求
      const validatedRequest = this.validateTaskRequest(request);
      
      // 2. 获取相关工具推荐
      const recommendedTools = await this.getToolRecommendations(validatedRequest);
      
      // 3. 创建任务
      const task = await this.backend.createTask({
        ...validatedRequest,
        suggestedTools: recommendedTools,
        estimatedComplexity: this.calculateComplexity(validatedRequest)
      });
      
      // 4. 更新状态
      this.updateState(state => ({
        ...state,
        currentTask: task
      }));
      
      return task;
    } catch (error) {
      this.errorHandler.handleError(error, 'TASK_CREATION');
      throw error;
    }
  }

  // 工具推荐算法
  private async getToolRecommendations(request: TaskRequest): Promise<Tool[]> {
    const history = this.getExecutionHistory();
    const similarTasks = this.findSimilarTasks(request, history);
    
    if (similarTasks.length > 0) {
      // 基于历史成功经验推荐
      return this.extractSuccessfulTools(similarTasks);
    }
    
    // 基于任务描述的语义匹配
    return this.semanticToolMatching(request);
  }

  // 实时任务监控
  monitorTaskExecution(taskId: string): Observable<TaskUpdate> {
    return this.backend.taskUpdates$(taskId).pipe(
      map(update => {
        // 实时更新UI状态
        this.updateCurrentTaskProgress(update);
        
        // 处理可能的错误
        if (update.error) {
          this.handleTaskError(update.error);
        }
        
        return update;
      }),
      filter(update => update.status !== TaskStatus.Completed) // 只监控未完成的任务
    );
  }
}

Electron 主进程与渲染进程的桥接

// Electron IPC桥接层
import { ipcMain, ipcRenderer, IpcMainEvent, IpcRendererEvent } from 'electron';
import { v4 as uuidv4 } from 'uuid';

export class ElectronBridge {
  private responseHandlers = new Map<string, (data: any) => void>();

  constructor() {
    this.setupIpcHandlers();
  }

  private setupIpcHandlers(): void {
    // 任务执行IPC
    ipcMain.handle('agent:execute-task', async (event: IpcMainEvent, taskData: TaskExecutionRequest) => {
      return await this.executeTaskInBackend(taskData);
    });

    // MCP工具调用IPC
    ipcMain.handle('mcp:call-tool', async (event: IpcMainEvent, toolCall: ToolCallRequest) => {
      return await this.callMCP tool(toolCall);
    });

    // 文件系统操作IPC
    ipcMain.handle('fs:read-file', async (event: IpcMainEvent, filePath: string) => {
      return await this.readFile(filePath);
    });

    ipcMain.handle('fs:write-file', async (event: IpcMainEvent, fileData: FileWriteRequest) => {
      return await this.writeFile(fileData);
    });

    // 实时日志流IPC
    ipcMain.on('agent:log-stream', (event: IpcMainEvent, logData: LogData) => {
      // 将日志数据转发到渲染进程
      const webContents = event.sender;
      webContents.send('ui:log-update', logData);
    });
  }

  // 安全的进程间通信
  private async executeTaskInBackend(taskData: TaskExecutionRequest): Promise<TaskExecutionResult> {
    const requestId = uuidv4();
    
    return new Promise((resolve, reject) => {
      // 设置超时
      const timeout = setTimeout(() => {
        this.responseHandlers.delete(requestId);
        reject(new Error('Task execution timeout'));
      }, taskData.timeout || 30000);

      // 注册响应处理器
      this.responseHandlers.set(requestId, (result) => {
        clearTimeout(timeout);
        if (result.error) {
          reject(new Error(result.error));
        } else {
          resolve(result.data);
        }
      });

      // 发送到主进程
      ipcMain.emit('agent:execute-task', {
        id: requestId,
        taskData
      });
    });
  }

  // 渲染进程API
  public executeTask(taskData: TaskExecutionRequest): Promise<TaskExecutionResult> {
    return ipcRenderer.invoke('agent:execute-task', taskData);
  }

  public callMCPTool(toolCall: ToolCallRequest): Promise<ToolCallResult> {
    return ipcRenderer.invoke('mcp:call-tool', toolCall);
  }
}

// 渲染进程前端桥接
export class FrontendBridge {
  constructor(private bridge: ElectronBridge) {}

  // 智能任务执行包装
  async executeIntelligentTask(task: IntelligentTaskRequest): Promise<IntelligentTaskResult> {
    // 1. 预处理任务
    const preprocessed = await this.preprocessTask(task);
    
    // 2. 执行任务
    const result = await this.bridge.executeTask(preprocessed);
    
    // 3. 后处理结果
    return this.postprocessResult(result);
  }

  // 实时进度监控
  monitorTaskProgress(taskId: string): Observable<TaskProgress> {
    return new Observable(observer => {
      const updateHandler = (event: IpcRendererEvent, progress: TaskProgress) => {
        if (progress.taskId === taskId) {
          observer.next(progress);
        }
      };

      ipcRenderer.on('ui:task-progress', updateHandler);

      return () => {
        ipcRenderer.removeListener('ui:task-progress', updateHandler);
      };
    });
  }
}

企业级部署与扩展性

Goose 作为企业级 AI 智能体框架,在部署架构和扩展性方面提供了完整的解决方案。

分布式执行架构

// 分布式任务执行器
use distributed_executor::{Executor, TaskDistribution, LoadBalancer};

pub struct DistributedAgentRuntime {
    local_executor: Arc<AgentRuntime>,
    distributed_executor: Arc<Executor>,
    load_balancer: Arc<LoadBalancer>,
    task_registry: Arc<RocksDB>,
    metrics_collector: Arc<MetricsCollector>,
}

impl DistributedAgentRuntime {
    pub async fn execute_distributed_task(
        &self,
        task: Task,
        distribution_policy: TaskDistribution,
    ) -> Result<TaskResult, DistributedError> {
        // 1. 分析任务特征
        let task_characteristics = self.analyze_task_characteristics(&task).await?;
        
        // 2. 选择执行策略
        let execution_strategy = self.load_balancer
            .select_strategy(&task_characteristics, &distribution_policy)
            .await?;
        
        match execution_strategy {
            ExecutionStrategy::Local => {
                self.local_executor.execute_task(task).await
            },
            ExecutionStrategy::Distributed(nodes) => {
                self.execute_on_nodes(task, nodes).await
            },
            ExecutionStrategy::Hybrid(local_weight, remote_nodes) => {
                self.execute_hybrid(task, local_weight, remote_nodes).await
            }
        }
    }

    // 智能负载均衡
    async fn execute_on_nodes(
        &self,
        task: Task,
        nodes: Vec<NodeInfo>,
    ) -> Result<TaskResult, DistributedError> {
        let mut node_futures = Vec::new();

        for node in nodes {
            let node_future = self.submit_to_node(task.clone(), node);
            node_futures.push(node_future);
        }

        // 并行执行并选择最快完成的节点
        let (result, _) = futures::future::select_all(node_futures).await;
        result
    }

    // 任务特征分析
    async fn analyze_task_characteristics(&self, task: &Task) -> Result<TaskCharacteristics, AnalysisError> {
        let complexity_score = self.calculate_complexity_score(task);
        let resource_requirements = self.estimate_resources(task);
        let dependencies = self.analyze_dependencies(task);
        let estimated_duration = self.estimate_duration(task);

        Ok(TaskCharacteristics {
            complexity_score,
            resource_requirements,
            dependencies,
            estimated_duration,
            task_type: self.classify_task_type(task),
        })
    }
}

监控与可观测性

// 企业级监控指标收集
use prometheus::{Counter, Histogram, Gauge, Registry};
use tokio::time::Instant;

pub struct MetricsCollector {
    agent_execution_counter: Counter,
    task_execution_duration: Histogram,
    active_tasks_gauge: Gauge,
    mcp_tool_usage: Counter,
    error_rate: Counter,
    memory_usage: Gauge,
    cpu_usage: Gauge,
}

impl MetricsCollector {
    pub fn new(registry: &Registry) -> Result<Self, MetricsError> {
        let agent_execution_counter = Counter::new(
            "agent_executions_total",
            "Total number of agent executions"
        ).map_err(MetricsError::PrometheusError)?;

        let task_execution_duration = Histogram::new(
            "task_execution_duration_seconds",
            "Task execution duration in seconds"
        ).map_err(MetricsError::PrometheusError)?;

        let active_tasks_gauge = Gauge::new(
            "active_tasks_count",
            "Number of currently active tasks"
        ).map_err(MetricsError::PrometheusError)?;

        let mcp_tool_usage = Counter::new(
            "mcp_tools_used_total",
            "Total number of MCP tool uses"
        ).map_err(MetricsError::PrometheusError)?;

        registry.register(Box::new(agent_execution_counter.clone()))
            .map_err(MetricsError::RegistryError)?;
        registry.register(Box::new(task_execution_duration.clone()))
            .map_err(MetricsError::RegistryError)?;
        registry.register(Box::new(active_tasks_gauge.clone()))
            .map_err(MetricsError::RegistryError)?;
        registry.register(Box::new(mcp_tool_usage.clone()))
            .map_err(MetricsError::RegistryError)?;

        Ok(Self {
            agent_execution_counter,
            task_execution_duration,
            active_tasks_gauge,
            mcp_tool_usage,
            error_rate: Counter::new("errors_total", "Total number of errors").unwrap(),
            memory_usage: Gauge::new("memory_usage_bytes", "Memory usage in bytes").unwrap(),
            cpu_usage: Gauge::new("cpu_usage_percent", "CPU usage percentage").unwrap(),
        })
    }

    // 记录任务执行
    pub async fn record_task_execution<F, T>(&self, task_type: &str, f: F) -> T 
    where
        F: Future<Output = T>,
    {
        let start_time = Instant::now();
        self.agent_execution_counter.inc();

        let result = f.await;

        let duration = start_time.elapsed().as_secs_f64();
        self.task_execution_duration.observe(duration);

        result
    }

    // 实时资源监控
    pub async fn update_resource_metrics(&self) -> Result<(), MetricsError> {
        // 获取系统内存使用
        let memory_info = self.get_memory_info().await?;
        self.memory_usage.set(memory_info.used as f64);

        // 获取CPU使用率
        let cpu_percent = self.get_cpu_usage().await?;
        self.cpu_usage.set(cpu_percent);

        Ok(())
    }
}

结语

Goose 通过 Rust 原生开发和 MCP 协议的深度集成,为 AI 智能体框架建立了新的技术标准。其架构设计不仅在安全性和性能上超越了传统的 Python/JavaScript 框架,更重要的是通过 Recipe 系统和模块化设计,为企业级 AI 应用提供了可扩展、可维护的技术方案。

从工程实践角度看,Goose 的成功证明了静态类型系统和内存安全在 AI 基础设施中的价值。通过 MCP 协议的标准化,Goose 避免了工具集成的碎片化问题,为 AI 智能体的生态系统发展指明了方向。

随着 AI 智能体技术的成熟,Goose 的架构理念和技术实现将继续影响整个行业的发展方向,特别是在企业级部署、安全性要求和可扩展性需求日益增长的背景下,其技术价值将更加凸显。


参考资料:

查看归档