在网络安全和数字取证领域,开源情报收集(OSINT)工具的准确性和覆盖范围直接决定了调查的效果。Social Analyzer作为一款开源的社交媒体分析引擎,以JavaScript为核心构建了覆盖1000+社交媒体平台的智能检测系统,为网络安全从业者、执法机构和研究人员提供了强大的技术工具。683个GitHub星标和广泛的行业采用,充分证明了这一技术架构的实用价值。
JavaScript在OSINT应用中的架构优势
Social Analyzer选择JavaScript作为主要开发语言,体现了对跨平台兼容性和生态系统丰富性的深度考量。JavaScript的事件驱动特性和异步处理能力,为大规模并发数据收集提供了天然的架构基础。
事件驱动的数据收集引擎
class SocialAnalyzerEngine {
constructor(config = {}) {
this.config = {
maxConcurrent: config.maxConcurrent || 15,
timeout: config.timeout || 30000,
retryAttempts: config.retryAttempts || 3,
userAgent: config.userAgent || this.generateRandomUserAgent(),
proxy: config.proxy,
...config
};
this.detectionModules = new Map();
this.websitesDatabase = new WebsitesDatabase();
this.resultAggregator = new ResultAggregator();
this.performanceMonitor = new PerformanceMonitor();
}
async analyzeUsername(username, options = {}) {
const startTime = Date.now();
const analysisId = this.generateAnalysisId();
try {
const context = await this.initializeAnalysisContext(analysisId, username, options);
const targetWebsites = await this.selectTargetWebsites(username, options);
const detectionPromises = targetWebsites.map(website =>
this.executeDetectionWithRetry(website, username, context)
.catch(error => this.handleDetectionError(error, website, username))
);
const results = await Promise.allSettled(detectionPromises);
const aggregatedResults = this.aggregateResults(results, context);
const finalReport = await this.generateAnalysisReport(aggregatedResults, {
analysisId,
executionTime: Date.now() - startTime,
username,
options
});
this.performanceMonitor.recordAnalysis(finalReport);
return finalReport;
} catch (error) {
this.handleAnalysisError(error, analysisId, username);
throw error;
}
}
async executeDetectionWithRetry(website, username, context) {
const module = this.getDetectionModule(website);
if (!module) {
throw new Error(`No detection module found for ${website.name}`);
}
for (let attempt = 1; attempt <= this.config.retryAttempts; attempt++) {
try {
const result = await this.executeWithConcurrencyLimit(async () => {
return await module.detect(username, {
...this.config,
...context.detectionOptions
});
});
const evaluation = this.evaluateDetectionResult(result, website);
return {
website: website.name,
detectionType: module.type,
confidence: evaluation.confidence,
result: evaluation.result,
metadata: result.metadata || {},
timestamp: Date.now(),
processingTime: result.processingTime || 0
};
} catch (error) {
if (attempt === this.config.retryAttempts) {
throw new DetectionError(`Failed after ${attempt} attempts: ${error.message}`, website.name);
}
await this.delay(Math.pow(2, attempt) * 1000);
continue;
}
}
}
async executeWithConcurrencyLimit(task) {
if (this.activeTasks >= this.config.maxConcurrent) {
await this.waitForAvailableSlot();
}
this.activeTasks++;
try {
return await task();
} finally {
this.activeTasks--;
this.notifyWaitingTasks();
}
}
async selectTargetWebsites(username, options) {
let websites = this.websitesDatabase.getAllWebsites();
if (options.websites && options.websites !== 'all') {
websites = websites.filter(site =>
options.websites.includes(site.name)
);
}
if (options.type) {
websites = websites.filter(site => site.category === options.type);
}
if (options.countries) {
websites = websites.filter(site =>
options.countries.includes(site.country)
);
}
if (options.top) {
websites = websites
.sort((a, b) => a.alexaRank - b.alexaRank)
.slice(0, options.top);
}
return websites;
}
}
class DetectionModule {
constructor(config) {
this.config = config;
this.type = config.type || 'default';
this.name = config.name;
this.supportedWebsites = config.supportedWebsites || [];
}
async detect(username, options) {
throw new Error('detect method must be implemented by subclass');
}
async performDetection(website, username, options) {
const startTime = Date.now();
try {
const searchUrl = this.buildSearchUrl(website, username);
const response = await this.makeRequest(searchUrl, options);
const parsedContent = await this.parseResponse(response);
const detectionResult = this.applyDetectionAlgorithm(parsedContent, username, website);
return {
success: true,
confidence: detectionResult.confidence,
result: detectionResult.matches,
metadata: {
processingTime: Date.now() - startTime,
searchUrl,
responseSize: response.data?.length || 0,
detectionMethod: this.type
}
};
} catch (error) {
return {
success: false,
error: error.message,
processingTime: Date.now() - startTime
};
}
}
buildSearchUrl(website, username) {
const patterns = website.searchPatterns;
const urlPattern = patterns.find(p => p.method === 'get');
return urlPattern ?
urlPattern.url.replace('{username}', encodeURIComponent(username)) :
website.baseUrl;
}
async makeRequest(url, options) {
const requestConfig = {
method: 'GET',
timeout: options.timeout || 30000,
headers: {
'User-Agent': options.userAgent,
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
}
};
if (options.proxy) {
requestConfig.proxy = options.proxy;
}
try {
return await this.httpClient.request(url, requestConfig);
} catch (error) {
throw new RequestError(`Request failed for ${url}: ${error.message}`);
}
}
}
多层检测算法实现
Social Analyzer的核心创新在于其多层检测架构,结合了不同的技术手段来提高检测准确率并降低误报率。
class MultiLayerDetectionSystem {
constructor() {
this.layers = {
normal: new NormalDetectionLayer(),
advanced: new AdvancedDetectionLayer(),
special: new SpecialDetectionLayer(),
ocr: new OCRDetectionLayer()
};
this.confidenceCalculator = new ConfidenceCalculator();
this.falsePositiveReducer = new FalsePositiveReducer();
}
async executeMultiLayerDetection(profileData, username, website) {
const layerResults = {};
const executionPromises = [];
for (const [layerName, layer] of Object.entries(this.layers)) {
if (layer.isEnabled(website)) {
executionPromises.push(
this.executeLayer(layer, layerName, profileData, username, website)
.catch(error => ({
layer: layerName,
success: false,
error: error.message
}))
);
}
}
const results = await Promise.allSettled(executionPromises);
for (const result of results) {
if (result.status === 'fulfilled' && result.value.success) {
layerResults[result.value.layer] = result.value;
}
}
const confidence = this.confidenceCalculator.calculate(layerResults, username, website);
const filteredResults = await this.falsePositiveReducer.filter(
layerResults,
confidence,
username
);
return {
confidence,
layers: filteredResults,
recommendation: this.generateRecommendation(confidence, filteredResults),
metadata: {
layerCount: Object.keys(layerResults).length,
executionTime: Date.now(),
website: website.name
}
};
}
async executeLayer(layer, layerName, profileData, username, website) {
const startTime = Date.now();
const result = await layer.analyze(profileData, username, website);
return {
layer: layerName,
success: true,
confidence: result.confidence,
matches: result.matches,
processingTime: Date.now() - startTime,
method: layer.getMethodName(),
details: result.details || {}
};
}
}
class AdvancedDetectionLayer extends DetectionLayer {
constructor() {
super('advanced');
this.algorithms = [
new FuzzyMatchingAlgorithm(),
new SemanticAnalysisAlgorithm(),
new PatternRecognitionAlgorithm(),
new BehavioralAnalysisAlgorithm()
];
}
async analyze(profileData, username, website) {
const matches = [];
let totalConfidence = 0;
for (const algorithm of this.algorithms) {
try {
const result = await algorithm.analyze(profileData, username, website);
if (result.confidence > 0.3) {
matches.push(result);
totalConfidence += result.confidence;
}
} catch (error) {
this.logger.warn(`Algorithm ${algorithm.name} failed: ${error.message}`);
}
}
return {
confidence: Math.min(totalConfidence / matches.length, 1.0),
matches: matches.map(m => ({
type: m.type,
confidence: m.confidence,
evidence: m.evidence,
description: m.description
})),
method: 'advanced-pattern-analysis'
};
}
}
class OCRDetectionLayer extends DetectionLayer {
constructor() {
super('ocr');
this.tesseract = require('tesseract.js');
this.imageAnalyzer = new ImageAnalyzer();
}
async analyze(profileData, username, website) {
const matches = [];
if (!profileData.images || profileData.images.length === 0) {
return {
confidence: 0,
matches: [],
method: 'ocr-analysis'
};
}
for (const imageUrl of profileData.images) {
try {
const ocrResult = await this.tesseract.recognize(imageUrl, 'eng');
const text = ocrResult.data.text.toLowerCase();
const usernameMatches = this.findUsernameMatches(text, username);
const contextMatches = this.analyzeContext(text, username, website);
if (usernameMatches.length > 0 || contextMatches.length > 0) {
matches.push({
type: 'image-ocr-match',
confidence: Math.max(usernameMatches.length * 0.3, contextMatches.length * 0.2),
evidence: {
imageUrl,
extractedText: text.substring(0, 200),
matchedElements: [...usernameMatches, ...contextMatches]
},
description: `OCR detected username patterns in image content`
});
}
const contentAnalysis = await this.imageAnalyzer.analyze(imageUrl);
if (contentAnalysis.relevanceScore > 0.5) {
matches.push({
type: 'image-content-analysis',
confidence: contentAnalysis.relevanceScore,
evidence: contentAnalysis.details,
description: 'Image content analysis suggests profile relevance'
});
}
} catch (error) {
this.logger.warn(`OCR analysis failed for ${imageUrl}: ${error.message}`);
}
}
return {
confidence: matches.length > 0 ?
matches.reduce((sum, match) => sum + match.confidence, 0) / matches.length : 0,
matches,
method: 'ocr-image-analysis'
};
}
}
class ConfidenceCalculator {
calculate(layerResults, username, website) {
let totalConfidence = 0;
let layerCount = 0;
let agreementBonus = 0;
for (const [layerName, result] of Object.entries(layerResults)) {
if (result.success && result.confidence > 0) {
const weight = this.getLayerWeight(layerName);
totalConfidence += result.confidence * weight;
layerCount += weight;
}
}
if (layerCount === 0) return 0;
let baseConfidence = totalConfidence / layerCount;
const agreementBonus = this.calculateAgreementBonus(layerResults);
const platformAdjustment = this.getPlatformAdjustment(website);
const finalConfidence = Math.min(
(baseConfidence + agreementBonus + platformAdjustment) * 100,
100
);
return Math.round(finalConfidence);
}
calculateAgreementBonus(layerResults) {
const confidences = Object.values(layerResults)
.filter(r => r.success && r.confidence > 0)
.map(r => r.confidence);
if (confidences.length < 2) return 0;
const mean = confidences.reduce((a, b) => a + b) / confidences.length;
const variance = confidences.reduce((sum, c) => sum + Math.pow(c - mean, 2), 0) / confidences.length;
const consistencyBonus = Math.max(0, (0.1 - variance) * 10);
return consistencyBonus;
}
getPlatformAdjustment(website) {
const reliabilityScore = website.reliability || 0.7;
return (reliabilityScore - 0.7) * 0.1;
}
}
跨平台部署架构设计
Social Analyzer需要在多种环境中运行,从个人研究者的单机部署到企业级的分布式集群,架构设计必须支持灵活的配置和扩展。
Docker容器化部署
class DockerDeploymentManager {
constructor() {
this.composeConfig = {
version: '3.8',
services: {
'social-analyzer': {
build: {
context: '.',
dockerfile: 'Dockerfile'
},
ports: ['9005:9005'],
environment: {
'NODE_ENV': 'production',
'MAX_CONCURRENT': '${MAX_CONCURRENT:-15}',
'TIMEOUT': '${TIMEOUT:-30000}'
},
volumes: [
'./logs:/app/logs',
'./config:/app/config',
'./data:/app/data'
],
restart: 'unless-stopped',
healthcheck: {
test: ['CMD', 'curl', '-f', 'http://localhost:9005/health'],
interval: '30s',
timeout: '10s',
retries: 3
}
},
'redis': {
image: 'redis:alpine',
ports: ['6379:6379'],
volumes: ['redis_data:/data'],
restart: 'unless-stopped'
},
'mongodb': {
image: 'mongo:4.4',
ports: ['27017:27017'],
environment: {
'MONGO_INITDB_ROOT_USERNAME': '${MONGO_USERNAME:-admin}',
'MONGO_INITDB_ROOT_PASSWORD': '${MONGO_PASSWORD:-password}'
},
volumes: ['mongodb_data:/data/db'],
restart: 'unless-stopped'
}
},
volumes: {
redis_data: {},
mongodb_data: {}
}
};
}
async generateComposeFile(deploymentOptions = {}) {
const config = JSON.parse(JSON.stringify(this.composeConfig));
if (deploymentOptions.scale) {
config.services['social-analyzer'].deploy = {
replicas: deploymentOptions.scale.replicas || 2,
resources: {
limits: {
memory: deploymentOptions.scale.memory || '2G',
cpus: deploymentOptions.scale.cpus || '1.0'
}
}
};
}
if (deploymentOptions.loadBalancer) {
config.services['nginx'] = {
image: 'nginx:alpine',
ports: ['80:80', '443:443'],
volumes: [
'./nginx.conf:/etc/nginx/nginx.conf',
'./ssl:/etc/ssl/certs'
],
depends_on: ['social-analyzer'],
restart: 'unless-stopped'
};
}
if (deploymentOptions.monitoring) {
config.services['prometheus'] = {
image: 'prom/prometheus',
ports: ['9090:9090'],
volumes: [
'./prometheus.yml:/etc/prometheus/prometheus.yml',
'prometheus_data:/prometheus'
],
command: ['--config.file=/etc/prometheus/prometheus.yml'],
restart: 'unless-stopped'
};
config.services['grafana'] = {
image: 'grafana/grafana',
ports: ['3000:3000'],
environment: {
'GF_SECURITY_ADMIN_PASSWORD': '${GRAFANA_PASSWORD:-admin123}'
},
volumes: ['grafana_data:/var/lib/grafana'],
restart: 'unless-stopped'
};
}
return config;
}
async deployToSwarm(deploymentConfig) {
const swarmManager = new SwarmManager();
try {
await swarmManager.init();
const networkId = await swarmManager.createNetwork('social-analyzer-net', {
driver: 'overlay',
attachable: true
});
const services = await Promise.all([
swarmManager.createService('social-analyzer', {
image: 'social-analyzer:latest',
networks: ['social-analyzer-net'],
replicas: deploymentConfig.replicas || 3,
resources: deploymentConfig.resources,
env: deploymentConfig.environment
}),
swarmManager.createService('redis', {
image: 'redis:alpine',
networks: ['social-analyzer-net']
}),
swarmManager.createService('mongodb', {
image: 'mongo:4.4',
networks: ['social-analyzer-net']
})
]);
return {
networkId,
services,
endpoints: await swarmManager.getServiceEndpoints()
};
} catch (error) {
throw new DeploymentError(`Swarm deployment failed: ${error.message}`);
}
}
}
class KubernetesDeploymentManager {
constructor(kubeconfig) {
this.client = new KubernetesClient(kubeconfig);
this.namespace = 'social-analyzer';
}
generateK8sConfig(deploymentOptions = {}) {
return {
apiVersion: 'apps/v1',
kind: 'Deployment',
metadata: {
name: 'social-analyzer',
namespace: this.namespace,
labels: {
app: 'social-analyzer',
version: 'latest'
}
},
spec: {
replicas: deploymentOptions.replicas || 3,
selector: {
matchLabels: {
app: 'social-analyzer'
}
},
template: {
metadata: {
labels: {
app: 'social-analyzer'
}
},
spec: {
containers: [{
name: 'social-analyzer',
image: 'social-analyzer:latest',
ports: [{
containerPort: 9005
}],
env: [
{
name: 'NODE_ENV',
value: 'production'
},
{
name: 'MAX_CONCURRENT',
value: process.env.MAX_CONCURRENT || '15'
}
],
resources: {
requests: {
memory: '512Mi',
cpu: '250m'
},
limits: {
memory: '2Gi',
cpu: '1000m'
}
},
livenessProbe: {
httpGet: {
path: '/health',
port: 9005
},
initialDelaySeconds: 30,
periodSeconds: 10
},
readinessProbe: {
httpGet: {
path: '/ready',
port: 9005
},
initialDelaySeconds: 5,
periodSeconds: 5
}
}]
}
}
}
};
}
async setupHorizontalPodAutoscaler(minReplicas, maxReplicas, targetCPU) {
const hpaConfig = {
apiVersion: 'autoscaling/v2',
kind: 'HorizontalPodAutoscaler',
metadata: {
name: 'social-analyzer-hpa',
namespace: this.namespace
},
spec: {
scaleTargetRef: {
apiVersion: 'apps/v1',
kind: 'Deployment',
name: 'social-analyzer'
},
minReplicas,
maxReplicas,
metrics: [{
type: 'Resource',
resource: {
name: 'cpu',
target: {
type: 'Utilization',
averageUtilization: targetCPU
}
}
}]
}
};
return await this.client.createOrUpdateHPA(hpaConfig);
}
}
性能监控与优化
class PerformanceMonitor {
constructor() {
this.metrics = {
requestCount: new Map(),
responseTime: new Map(),
errorCount: new Map(),
concurrentTasks: 0,
memoryUsage: process.memoryUsage(),
cpuUsage: process.cpuUsage()
};
this.thresholds = {
maxResponseTime: 30000,
maxMemoryUsage: 1024 * 1024 * 1024,
maxErrorRate: 0.1,
maxConcurrentTasks: 50
};
this.startMonitoring();
}
startMonitoring() {
setInterval(() => {
this.collectSystemMetrics();
}, 5000);
setInterval(() => {
this.generatePerformanceReport();
}, 60000);
}
recordRequest(website, duration, success, error = null) {
const timestamp = Date.now();
const count = this.metrics.requestCount.get(website) || 0;
this.metrics.requestCount.set(website, count + 1);
const times = this.metrics.responseTime.get(website) || [];
times.push({ timestamp, duration, success });
if (times.length > 1000) {
times.shift();
}
this.metrics.responseTime.set(website, times);
if (!success && error) {
const errors = this.metrics.errorCount.get(website) || 0;
this.metrics.errorCount.set(website, errors + 1);
}
this.checkPerformanceThresholds(website);
}
checkPerformanceThresholds(website) {
const responseTimes = this.metrics.responseTime.get(website) || [];
const recentTimes = responseTimes
.filter(entry => Date.now() - entry.timestamp < 60000)
.map(entry => entry.duration);
if (recentTimes.length > 0) {
const avgResponseTime = recentTimes.reduce((a, b) => a + b, 0) / recentTimes.length;
if (avgResponseTime > this.thresholds.maxResponseTime) {
this.triggerPerformanceAlert('SLOW_RESPONSE', {
website,
avgResponseTime,
threshold: this.thresholds.maxResponseTime
});
}
}
const totalRequests = this.metrics.requestCount.get(website) || 0;
const totalErrors = this.metrics.errorCount.get(website) || 0;
const errorRate = totalRequests > 0 ? totalErrors / totalRequests : 0;
if (errorRate > this.thresholds.maxErrorRate) {
this.triggerPerformanceAlert('HIGH_ERROR_RATE', {
website,
errorRate,
threshold: this.thresholds.maxErrorRate
});
}
}
generateOptimizationRecommendations() {
const recommendations = [];
for (const [website, times] of this.metrics.responseTime.entries()) {
const recentTimes = times
.filter(entry => Date.now() - entry.timestamp < 300000)
.map(entry => entry.duration);
if (recentTimes.length > 0) {
const avgTime = recentTimes.reduce((a, b) => a + b) / recentTimes.length;
if (avgTime > 15000) {
recommendations.push({
type: 'PERFORMANCE',
website,
message: `High response time detected (${Math.round(avgTime)}ms). Consider increasing timeout or implementing caching.`,
priority: 'HIGH'
});
}
}
}
const memoryUsage = this.metrics.memoryUsage;
const memoryUsagePercent = memoryUsage.heapUsed / memoryUsage.heapTotal;
if (memoryUsagePercent > 0.8) {
recommendations.push({
type: 'MEMORY',
message: 'High memory usage detected. Consider increasing memory limits or optimizing data processing.',
priority: 'MEDIUM'
});
}
return recommendations;
}
}
数据可视化与分析报告
Social Analyzer通过现代化的Web界面和数据可视化技术,将复杂的OSINT分析结果转化为直观易懂的信息图表。
前端可视化架构
class VisualizationManager {
constructor() {
this.chartTypes = {
forceDirected: 'force-directed',
bar: 'bar',
pie: 'pie',
timeline: 'timeline',
network: 'network'
};
this.colorSchemes = {
confidence: {
high: '#28a745',
medium: '#ffc107',
low: '#dc3545',
unknown: '#6c757d'
},
detection: {
normal: '#007bff',
advanced: '#28a745',
special: '#fd7e14',
ocr: '#6f42c1'
}
};
}
generateForceDirectedGraph(analysisData) {
const nodes = [];
const links = [];
nodes.push({
id: analysisData.username,
label: analysisData.username,
group: 'target',
size: 30,
color: this.colorSchemes.confidence.high
});
analysisData.detectedProfiles.forEach(profile => {
const confidenceColor = this.getConfidenceColor(profile.confidence);
nodes.push({
id: profile.website,
label: profile.website,
group: 'profile',
size: this.calculateNodeSize(profile.confidence),
color: confidenceColor,
metadata: {
confidence: profile.confidence,
detectionType: profile.detectionType,
lastSeen: profile.lastSeen,
profileUrl: profile.profileUrl
}
});
links.push({
source: analysisData.username,
target: profile.website,
value: profile.confidence / 100,
color: confidenceColor,
width: this.calculateLinkWidth(profile.confidence)
});
});
analysisData.relatedProfiles.forEach(related => {
nodes.push({
id: related.username,
label: related.username,
group: 'related',
size: 15,
color: this.colorSchemes.confidence.medium
});
links.push({
source: related.username,
target: analysisData.username,
value: related.similarity,
color: this.colorSchemes.confidence.medium,
width: 2
});
});
return {
nodes,
links,
options: {
physics: {
enabled: true,
stabilization: { iterations: 150 },
barnesHut: {
gravitationalConstant: -2000,
centralGravity: 0.1,
springLength: 95,
springConstant: 0.04,
damping: 0.09,
avoidOverlap: 1
}
},
interaction: {
hover: true,
tooltipDelay: 200
}
}
};
}
generateTimelineChart(timelineData) {
return {
items: timelineData.map(event => ({
id: event.id,
content: event.description,
start: event.timestamp,
end: event.endTime,
group: event.category,
className: this.getTimelineClassName(event.confidence),
title: this.generateEventTooltip(event)
})),
groups: [
{ id: 'detection', content: 'Profile Detection', order: 1 },
{ id: 'analysis', content: 'Analysis', order: 2 },
{ id: 'validation', content: 'Validation', order: 3 }
],
options: {
stack: true,
showMajorLabels: true,
showCurrentTime: true,
zoomMin: 1000 * 60 * 60,
zoomMax: 1000 * 60 * 60 * 24 * 365,
type: 'box'
}
};
}
generateStatisticalCharts(statisticalData) {
const charts = {};
charts.confidenceDistribution = {
type: 'histogram',
data: {
datasets: [{
label: 'Detection Confidence Distribution',
data: statisticalData.confidenceHistogram,
backgroundColor: 'rgba(54, 162, 235, 0.6)',
borderColor: 'rgba(54, 162, 235, 1)',
borderWidth: 1
}]
},
options: {
responsive: true,
scales: {
x: {
title: {
display: true,
text: 'Confidence Score'
}
},
y: {
title: {
display: true,
text: 'Count'
},
beginAtZero: true
}
}
}
};
charts.websiteCategoryDistribution = {
type: 'pie',
data: {
labels: statisticalData.categoryDistribution.map(cat => cat.name),
datasets: [{
data: statisticalData.categoryDistribution.map(cat => cat.count),
backgroundColor: [
'#FF6384', '#36A2EB', '#FFCE56',
'#4BC0C0', '#9966FF', '#FF9F40'
]
}]
},
options: {
responsive: true,
plugins: {
legend: {
position: 'bottom'
}
}
}
};
charts.detectionMethodComparison = {
type: 'bar',
data: {
labels: statisticalData.detectionMethods.map(method => method.name),
datasets: [
{
label: 'Success Rate (%)',
data: statisticalData.detectionMethods.map(method => method.successRate),
backgroundColor: 'rgba(75, 192, 192, 0.6)',
borderColor: 'rgba(75, 192, 192, 1)',
borderWidth: 1
},
{
label: 'Average Confidence',
data: statisticalData.detectionMethods.map(method => method.avgConfidence),
backgroundColor: 'rgba(255, 206, 86, 0.6)',
borderColor: 'rgba(255, 206, 86, 1)',
borderWidth: 1
}
]
},
options: {
responsive: true,
scales: {
y: {
beginAtZero: true,
max: 100
}
}
}
};
return charts;
}
generateDetailedReport(analysisData, visualizationData) {
return {
summary: {
username: analysisData.username,
totalProfilesFound: analysisData.detectedProfiles.length,
highConfidenceProfiles: analysisData.detectedProfiles.filter(p => p.confidence >= 80).length,
analysisDuration: analysisData.analysisDuration,
executionDate: new Date().toISOString()
},
visualizations: {
forceDirectedGraph: this.generateForceDirectedGraph(analysisData),
timeline: this.generateTimelineChart(analysisData.timeline),
statistics: this.generateStatisticalCharts(analysisData.statistics)
},
detailedFindings: this.generateDetailedFindings(analysisData),
recommendations: this.generateRecommendations(analysisData),
metadata: {
analysisId: analysisData.analysisId,
version: '1.0',
dataRetention: '7 days',
exportFormats: ['PDF', 'JSON', 'CSV']
}
};
}
}
class WebInterfaceController {
constructor() {
this.websocket = null;
this.visualizationManager = new VisualizationManager();
this.setupWebSocket();
}
setupWebSocket() {
this.websocket = new WebSocket('ws://localhost:9005/ws');
this.websocket.onmessage = (event) => {
const message = JSON.parse(event.data);
this.handleRealTimeUpdate(message);
};
this.websocket.onopen = () => {
console.log('WebSocket connected');
};
this.websocket.onerror = (error) => {
console.error('WebSocket error:', error);
};
}
handleRealTimeUpdate(message) {
switch (message.type) {
case 'analysis_progress':
this.updateProgressBar(message.progress);
break;
case 'new_detection':
this.addDetectionToGraph(message.data);
break;
case 'analysis_complete':
this.displayFinalResults(message.data);
break;
case 'error':
this.displayError(message.error);
break;
}
}
updateProgressBar(progress) {
const progressBar = document.getElementById('analysis-progress');
if (progressBar) {
progressBar.style.width = `${progress}%`;
progressBar.setAttribute('aria-valuenow', progress);
}
}
addDetectionToGraph(detectionData) {
const graphContainer = document.getElementById('force-directed-graph');
if (graphContainer && window.vis) {
const graph = new vis.Network(graphContainer, {
nodes: [detectionData.node],
edges: [detectionData.edge]
}, this.visualizationManager.generateForceDirectedGraph({}).options);
graphContainer.data.nodes.add(detectionData.node);
graphContainer.data.edges.add(detectionData.edge);
graph.redraw();
}
}
}
结语
Social Analyzer通过JavaScript生态系统构建的OSINT分析框架,展现了现代Web技术在专业安全工具开发中的强大潜力。其并发处理能力、多层检测算法和跨平台部署特性,为数字取证和网络安全从业者提供了可靠的技术基础。
从工程实践角度看,JavaScript的事件驱动架构和丰富的生态系统为OSINT工具的开发提供了理想的开发环境。项目不仅在技术实现上达到了企业级标准,更重要的是为开源情报收集建立了可复用的技术模式。
随着社交媒体平台的不断发展和变化,Social Analyzer的模块化架构和可扩展设计将继续适应新的挑战,为网络安全社区提供持续的技术支持。其成功也证明了跨平台兼容性和快速开发在专业工具领域的重要价值。
参考资料: